
The future of art

Marc Paterno for the art team
22 November 2011



“Code must be scalable or its lifetime will be short.”

“Scalar performance is not scaling.”

—Michael McCool, Intel, at SC’11

The art development team is:
Walter E. Brown
Lynn Garren
Chris Green
Jim Kowalkowski
Marc Paterno



The purpose of this talk

We want to communicate:
our starting point,
our driving use cases, and
our vision of where we are headed.

3 / 27



Who are our users?
art is used by upcoming Intensity Frontier (IF) experiments

Experiments have many fewer collaborators than the
collider experiments;
They can’t afford to invent their own infrastructure;
They can’t afford a full-time framework support person;
They need both data acquisition (DAQ)—including
software trigger—and offline processing infrastructure.

Current users include:
NOνA;
mu2e;
muon g-2;
LAr community: MicroBooNE, ARGONeut, LBNE/LAr.

Some other future experiments, and other Fermilab efforts, are
also targets for our prototyping.

4 / 27



The state of art

Forked from CMSSW code base ∼ two years ago.
Removed several complicated features not needed by our
clients.
Replaced the build system with something we could
sustain.
Replaced software delivery system with something we could
sustain.
Added features needed by the IF experiments.
Code size:

55,000 lines of non-blank non-test source, excluding
comments,
23,000 lines of non-blank test source, excluding comments.

We build with GCC 4.6.1 and Boost 1.47.0.
We are beginning to push for -std=c++0x1.

1Move semantics!
5 / 27



Features removed

The major features that were not needed by our community
were:

the EventSetup and all associated support
the XML job report system
the POOL file catalog support
the collection class templates which supported containing
base classes (sometimes called “polymorphic collections”)
the persistent reference templates in support of the
container templates we removed
the “one file, two file” code to support breaking data files
into tiers

6 / 27



Features changed

Simplified the Ptr and PtrVector class templates.
The plug-in system, including loading of dynamic libraries;
replaced with a system decoupled from the build process,
and relying upon simple naming conventions. Modules,
services, and Root dictionaries are now directly handled,
and are less coupled.
The services system; decoupled from library loading; we
supported required, optional, and user services. Each
experiment can introduce its own services without
modifying the framework.
The Python-based configuration system, replaced with a
YAML2-like language, shared by projects not using art.

We have done widespread refactoring in many places.

2See http://www.yaml.org
7 / 27

http://www.yaml.org


Some of the new features in art

External product references: the Assns class template and
supporting FindOne and FindMany “smart query” class
templates, providing bidirectional inter-product references.
The MixFilter class template, providing a generic facility
for experiments to “mix” data from additional files into
their primary data stream. Used by mu2e to mix
thousands of background events into each signal event.
The ReaderSource class template, providing a generic
facility for experiments to write their own input sources.
A facility for embedding an SQLite3 database in the
ROOT event data file (thanks to P. Russo), which the
framework uses for storage of meta-data and which
experiments can use for their own needs.

8 / 27



Changes and additions to the art ecosystem
We replaced SCRAM with a build system based on CMake,
which has been easy to maintain and has provided
excellent support for parallel builds, including parallel
running of tests.
We deliver software products (both ones we write and ones
upon which we depend) using an enhanced “relocatable”
UPS. Installation of the entire system is performed by
downloading of tarballs and unwinding them in a directory
of the user’s choice. No root permissions are needed.
art is an external dependency for the experiments,
provided as an “umbrella product” called the art suite.
Internally, the art suite is layered as a set of products, each
of which has its own dependencies.
Our build system understands our layering of products and
uses UPS to set up dependent products, rather than having
a “base release” and a “test release”, thus avoiding
inconsistent builds.

9 / 27



Dependencies of art
art

messagefacility cetpkgsupport clhep cppunit gccxml libsigcpp sqlite Root

fhiclcpp

cetlib

cpp0x

gcc boost

Transitive dependencies are suppressed in this diagram.
Each box is a UPS product.
Blue boxes indicate the products we directly support.

10 / 27



Uses cases guiding our efforts

Disclaimer: While these use cases are guiding our efforts, we are
not saying that all these groups have decided to follow our
designs.

We are using our understanding of the DAQ needs of
several IF experiments, as well as some other efforts, to
guide our development efforts.
These efforts share a need for development.

11 / 27



Use case #1: the NOνA data-driven trigger

designed to continuously process data at full sampling rate
collects and buffers time-continuous data from over 350k
readout channels
every time window is analyzed
for the far detector, custom designed upstream hardware
5ms time slices into 180 multicore commodity computing
nodes, at 2GB/s.
positive trigger decisions fed back to global trigger to cause
readout of the data.

12 / 27



DCM

Global 
Trigger

EB artshared
memory

Event Builder Node 1

EB artshared
memory

Event Builder Node M

trigger [start, duration]

Data 
Logger



Use case #2: the muon g-2 DAQ

Our goal is to see how few BES nodes can perform the task.

14 / 27



FES

9 Digitizers FPGA

P
C

Ie

9 Digitizers FPGA

9 Digitizers FPGA

9 Digitizers FPGA

24 Calorimeters

Calorimeter

35 Channels,
500MHz ADCs

BES

P
C

Ie

sy
s t

e
m

 (
2

)

Waveform Analysis (1)
Calibration,
T-Method,

Q-Method, ...

Event Builder

12 Event Builders

Event stream 
out to data 

logger

Fragment exchange 
with other event 

builders through high-
speed network

1.
5

1
 G

B
/s 50MB/s per method

Data Logger

To storage system. 100MB/s 
for 4/12 of year = 1PB data

Waveform Analysis (2)
...

18 x 600us windows/sec normally = 370MB/s,
4x18 x 600us windows/sec maximum = 1.51GB/s

sy
s t

e
m

 (
1

)



Use case #3: the DarkSide-50 DAQ

Our goal is to see how few nodes are needed for this task.

16 / 27



Darkside 50
Prototype

(Simplified view)

P
C

Ie

Fragment
Reader

Writer

5 fiber link,
300us windows at 50 Hz,
250MHz ADCs x40 channels,
300MB/s totalDigitizer

Digitizer
Digitizer

8 digitizer channels

Digitizer
Digitizer
Digitizer

8 digitizer channels

Digitizer
Digitizer
Digitizer

8 digitizer channels

Digitizer
Digitizer
Digitizer

8 digitizer channels

Digitizer
Digitizer
Digitizer

8 digitizer channels Multicore Node

Fragment
Reader

Fragment
Reader

Fragment
Reader

Fragment
Reader

Event Reader,
compression

algorithm

Event Reader,
compression

algorithm

Event 
Builder 
layer

Output Stream 
= 30MB/s



Use case #4: the PCT testbed

The Proton Computed Tomography (PCT) project is a joint
effort between NIU, LLU Medical Center, SCIPP and Fermilab
to produce a high-resolution medical imaging system using a
proton beam.
Our goal is to see how rapidly the data can be collected and
converted to raw tracks, ready for processing at the image
reconstruction cluster.

18 / 27



40 channels over 
2 10Gb/s links

Link
Reader

Link
Reader

Full image = 1TB

Slice-1

Slice-2

Detector

Event Builder

Raw 
Data

Archiver

Unpacker

Fiber 
Track
Finder

Filter

Writer

Disk

DQM 
Summary 
Service 
Layer

Super-duper
DAQ Node

100GB per
image output

Monitoring
output

Disk

Event Builder: 
assembles ~2B 
proton events

Unpacker: 
Applying 
calibrations and 
alignments (ADCs 
to energy, channel 
number to global 
coordinates)

Assumption: input 
channels are 
calorimeter and 
fiber tracker

Calorimeter
Reconstructor

Filter: Use tracks 
and calorimeter 
information to 
decide if this is a 
good measurement 
or not.

Output 
Aggregator

Service

Raw Data 
Aggregator

Service

Schedule



The art-mt framework architecture prototype

We want to obtain both event-level and subevent-level
parallelism.

Input source runs in its own thread.
In our initial version, runs must be processed serially, as
will subruns. This is not a problem for DAQ applications.
Events are read by the input, and put onto a shared queue
Schedules pop Events from the shared queue, and process
them asynchronously.
Our initial use cases do not require output modules,
avoiding threading issues with Root IO. Of course, the IO
problem will have to be handled eventually.

20 / 27



Services

We have two categories of services:
Shared services, which have the same state for the whole
program These include e.g., TFileService, which must
deal with Root’s global state, and SimpleMemoryCheck,
which is observing the global state of the process. Only one
instance will exist for each of these services.
Schedule-specific services, e.g., CurrentModuleService,
which understands which module is executing in the
Schedule to which it belongs. Each Schedule will contain
its own instances of each Schedule-specific service.

21 / 27



Signals and callbacks

art issues signals to indicate the occurrence of events
during the event processing life-cycle.
Each signal is issued either by the application object and so
is program-wide, or by a Schedule and then is
thread-specific.
There is no issue of asynchronous processing of signals,
because they are defined parts of the event loop.

22 / 27



Modules

Event-level parallelism “happens” in the Schedule.
Except for the input, modules configured by the user will
be replicated in each Schedule.
Modules must use only thread-safe libraries.
Modules must be written in a thread-safe style.

When we moved from Fortran to C++, we had to learn:
code that leaks memory is wrong code, and
code that is not exception safe is wrong code.

Now we are writing C++ code for concurrent systems, and we
have to learn:

code that is not thread safe is wrong code.
Our goal is to identify one or more programming models that
make writing concurrent code easier.

23 / 27



shared 
services

input

file #3

file #2

file #1

schedule #1

mod A mod B mod C output

schedule-specific 
services

schedule #2

mod A mod B mod C output

schedule-specific 
services

schedule #3

mod A mod B mod C output

schedule-specific 
services



Sketch of our work plan

We do not (yet) have a detailed plan. We plan to introduction
functionality in steps.

1 Input source that reads NOνA raw data from shared
memory and creates Events on a shared queue.

2 Schedule that draws Events from the queue.
3 EDProducer or EDFilter that posts DDS3 messages

announcing triggers.
4 Multiple Schedules reading from the queue.
5 GPU-enabled algorithms running in some modules.
6 Subevent-level parallelism in some modules.

3Data Distribution Service, used by the NOνA DAQ for messaging.
25 / 27

http://portals.omg.org/dds


Promising technologies

We are only beginning to investigate these possibilities.
For GPU programming:

CUDA
Thrust (C++ template
library for more
“accessible” CUDA)
OpenCL

OpenACC, just recently
announced, does not seem
plausible—unless GCC were to
adopt it. We will watch its
progress.

For CPU multi-threading:
OpenMP
Intel Thread Building
Blocks

Cilk++, in GCC 4.7
development thread, seems too
speculative until 4.7 is released.
Intel Array Building Blocks
would have been interesting,
but will it regain support?

26 / 27



Still further in the future . . .

We need to have concurrent-capable support for histograms
and ntuples.
We will be working towards a fully demand-driven system,
using task parallelism, first at the framework level and
later in the module.
The technologies we are moving toward are those embraced
by the HPC community.

27 / 27


